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Stem cell-derived extracellular vesicles participate in the 
remodeling of stroke brain
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Strokes are among the diseases with the highest mortality and morbidity worldwide. Despite this, current stroke treatments 
have several limitations, prompting the exploration of new therapeutic options to address the post-acute phase. A key 
innovation involves the transplantation of stem cells, which exert their effects through various mechanisms. Notably, they 
release extracellular vesicles that contain anti-inflammatory factors, thereby reducing cellular damage and promoting 
neurogenesis. While the use of stem cells and extracellular vesicles is still under investigation, this review highlights that the 
utilization of extracellular vesicles presents several advantages. These advantages suggest that extracellular vesicles could 
potentially be a superior treatment option for recovering cognitive and motor function.
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Introduction 
Strokes are one of the primary contributors to global mortality 
and long-term disability worldwide (Tirandi et al., 2023). In 
the United States alone, approximately 796,000 new cases 
are reported yearly, with 50% of those affected experiencing 
reduced mobility (Katan et al., 2019). Ischemic stroke, which 
causes about 70% of strokes, remains the most prevalent form 
(Feigin et al., 2017). Unfortunately, current treatments for acute 
ischemic stroke, such as endovascular treatment or intravenous 
thrombolysis with tissue plasminogen activator (tPA) (de 
Leciñana et al., 2014), only benefit a small number of ischemic 
stroke patients. Because of the short 4.5-hour therapeutic 
window, approximately 90% of ischemic stroke patients are not 
eligible for current treatments (Grossman et al., 2013; Knecht 

et al., 2018; Saceleanu et al., 2023). Therefore, finding new 
effective therapeutic strategies after the acute phase of ischemic 
stroke is essential to reduce mortality and enhance functional 
recovery in stroke survivors.

Stem cell therapy for stroke
Over the last few decades, researchers have been investigating a 
promising therapeutic strategy involving stem cells (SCs). These 
SCs have shown the potential to extend the treatment window 
even days after an ischemic event (Huang et al., 2019; Zhang et 
al., 2020). Animal studies have provided substantial evidence 
of the benefits of SC, as they can improve neurological function 
and reduce the size of the infarct (Borlongan et al., 2019; Chen 
et al., 2019; Huang et al., 2019; Zhang et al., 2021).

Highlights
Successful treatment for stroke remains a significant unmet clinical need due to the narrow therapeutic window of current 
treatments targeting only the primary ischemic injury. Finding a treatment strategy that has a wider therapeutic window, especially 
sequestering the secondary cell death, will likely improve stroke outcomes. Here, we review the current status of stem cell therapy 
with emphasis on stem cell-derived extracellular vesicles, which appear to mitigate progressive secondary cell death by targeting 
inflammatory, angiogenic, vasculogenic, and neurogenic pathways. This extracellular vesicle-mediated brain remodeling process 
recapitulates conditioning medicine in that the treatment strategy facilitates the host neurovascular unit to mount a regenerative 
process against stroke.
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     In both experimental and clinical studies, various 
types of SCs have been used as treatments. These include 
hematopoietic stem cells, embryonic stem cells, mesenchymal 
stem cells (MSC), neural stem cells, induced pluripotent 
stem cells, endothelial progenitor cells, and adult tissue-
derived stem cells (Liu et al., 2009; Incontri Abraham et al., 
2019; Custodia et al., 2022). Among them, MSC and neural 
stem cells have demonstrated significant effectiveness in 
promoting neuroprotection, immune regulation, astrogenesis, 
oligodendrogenesis, synaptogenesis, and improvements in 
motor and cognitive functions. They also play a role in secreting 
neurotrophic factors and growth factors and in remodeling the 
extracellular matrix (Zhang et al., 2020; Napoli et al., 2016; 
Napoli et al., 2018; Nguyen et al., 2019; Haghighitalab et al., 
2021; Dabrowska et al., 2019; Regenhardt et al., 2020; Tuazon 
et al., 2019). 
     The use of SCs to treat stroke survivors is becoming 
increasingly prevalent in clinical studies (Lee et al., 2022; Chiu 
et al., 2022; de Celis-Ruiz et al., 2021). However, the effective 
production and ethical acquisition of sufficient SC are vital 
considerations when moving SC products from the laboratory 
to the clinical setting. Furthermore, identifying the most 
suitable cell type for exogenous SC transplantation requires 
careful evaluation of the effectiveness, accessibility, and ethical 
considerations (Incontri Abraham et al., 2019; Chase et al., 
2021).
     There are several proposed mechanisms by which SCs exert 
their effects. Two of the most well-documented mechanisms 
involve SCs replacing damaged cells and secreting paracrine 
factors, also known as the bystander effect. Transplanted 
neural stem cells and MSC can produce growth factors, such 
as vascular endothelial growth factor (VEGF), brain-derived 
neurotrophic factor (BDNF), and epidermal growth factor (EGF) 
(Huang et al., 2019). These substances can reduce apoptosis, 
oxidative stress, and neuroinflammation while also promoting 
mitochondrial repair, angiogenesis, vasculogenesis, and 
neurogenesis (Borlongan et al., 2004; Doeppner et al., 2010; 
Islam et al., 2021) (Figure 1).
     Interestingly, the bystander effect’s mechanism suggests that 
when SCs are transplanted into the brains of stroke animals, 
they may not engraft well. Nevertheless, they still contribute 
to functional recovery, indicating that long-term survival and 
differentiation may not be necessary to repair the stroke-affected 
brain and restore its functions (Borlongan et al., 2004; Doeppner 
et al., 2010; Islam et al., 2021). This discovery challenges the 
notion that stem cell engraftment is required for brain repair, 
highlighting the importance of the therapeutic effects derived 
from the SC secretome. The secretome comprises extracellular 
vesicles (EVs) and exosomes that carry growth factors such as 
chemokines, cytokines, microRNA (miRNA), long noncoding 
RNA, and VEGF (Castelli et al., 2021; Kishida et al., 2019; 
Cunningham et al., 2018). Despite not fully understanding the 
precise mechanisms behind SC therapy, whether it involves cell 
replacement, bystander effects, or exosomal therapeutic effects, 
transplanting SCs into stroke-afflicted animals has shown 
significant reductions in secondary cell death, particularly in 
neuroinflammation, along with improved behavioral outcomes 
(Venkat el at., 2020; Zhang et al., 2019).

Neurorepair via stem cell-derived EVs
EVs are a set of membrane-bound structures classified into 
three subtypes: apoptotic bodies (50-4000nm), microvesicles 
(100-1000nm), and exosomes (30-150nm) (van Niel et al., 
2018; Kalluri et al., 2020). Apoptotic bodies are released from 
cells undergoing apoptosis, microvesicles are released from 
the plasma membrane through clathrin-mediated shedding, 
and exosomes facilitate intercellular communication. EVs can 
contain different materials such as lipids, proteins, or genetic 

material, and they are found in almost all biological fluids, such 
as cerebrospinal fluid, plasma, saliva, urine, and serum (Valadi 
et al., 2007; van Niel et al., 2018). Moreover, EVs can carry 
functional organelles to help impaired cells in local and distant 
environments. In particular, mitochondria transferred from 
therapeutic cells via EVs showed promising results in improving 
the conditions of lesioned cells (Hayakawa et al., 2018; Rim et 
al., 2018). EVs are important in intercellular communication and 
are involved in pathological and physiological functions since 
they contribute to the progression and development of different 
inflammatory, autoimmune, metabolic, cancer metastasis, 
liver, and neurodegenerative and neuroinflammatory diseases 
(Izquierdo-Altarejos et al., 2024). Through extensive studies, 
MSC shows great promise for cell therapy and tissue repair, but 
MSC-derived EVs have several advantages compared to cell 
therapy: better safety, targeting, and versatility. MSC-derived 
EVs are less immunogenic and lack self-replicative capacity, 
thereby having no potential for tumor growth. EVs from MSCs 
help decrease neuroinflammation secondary to stroke. In animal 
models, the administration of MSC-derived EVs promotes 
neurogenesis, angiogenesis, and neural remodeling. EVs are 
much smaller than cells, allowing EVs greater mobility to target 
organs or tissues, like crossing the blood-brain barrier. EVs 
are modifiable to increase their therapeutic potential, as seen 
by a phase II clinical trial examining the efficacy of miR-124-
enriched MSC-derived EVs on neurovascular remodeling and 
functional recovery after acute ischemic stroke (ClinicalTrials.
gov: NCT03384433) (Izquierdo-Altarejos et al., 2024).
     During a stroke, EVs are released into the blood, including 
neural cells, endothelial cells, progenitor cells, leukocytes, 
and platelets. They also possess brain-derived surface markers 
that include cell adhesion molecule L1, GPI-anchored prion 
protein, neural cell adhesion molecule, glutamate receptors 2 
and 3, contactin-2, and proteins such as the glutamate chain 
light neurofilaments, neuron-specific enolase, and β-tubulin. 
Simak et al. (2006) reported increased levels of endothelial EVs 
during acute stroke compared to controls (Stenz et al., 2020; 
Ollen-Bittle et al., 2022). By their way of formation, EVs can 
be divided into exomes and microvesicles. Exosomes are small 
electrical vesicles with a diameter of 30 to 150 nm. They are 
formed from internal germination by an endosomal pathway 
to mature and become a multivesicular body to function with 
the plasma membrane. On the other hand, microvesicles are 
irregular in shape, measure from 50 to 1000 nm, and are 
produced by direct germination of the plasma membrane 
(Ollen-Bittle et al., 2022). 
    After the stroke, endothelial cells undergo an inflammatory 
process that promotes the release of EVs. Such EVs express 
endothelial cell antigens like vascular endothelium, endogin, 
phosphatidylserine,  and cadherin,  promoting a more 
inflammatory profile. Indeed, after exposure  to inflammatory 
cytokines, vascular cells upregulate intracellular adhesion 
molecule 1 (ICAM-1). In addition, neurons can release EVs 
that contain miRNA-98, which helps to decrease microglial 
phagocytosis of neurons (Stenz et al., 2020; Ollen-Bittle et al., 
2022).
     With MSC-derived EVs showing great promise over cell 
therapy, extensive studies have been done to characterize the 
contents of these EVs. Many exosomal miRNAs that improve 
ischemia-induced brain damage were identified within the last 
few years. These exosomal miRNAs aid neurogenesis and 
have anti-inflammatory, immunomodulatory, and angiogenic 
effects. Exosomal miR-126 derived from adipose-derived 
(AD) MSCs and miR-184 derived from bone marrow-derived 
mesenchymal stem cells (BM-MSCs) induce behavioral 
recovery by promoting neurogenesis in stroke models (Xu 
et al., 2020; Gregorius et al., 2021; Fattahi et al., 2023). 
Exosomal miR-30d derived from AD-MSCs decreases brain 
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infarcts by downregulating autophagy and enhancing M2 
microglia polarization. Additionally, exosomal miR-138 derived 
from BM-MSCs inhibits astrocytes' inflammatory response, 
improving neurological function. Exosomal miR-29b derived 
from BM-MSCs enhances angiogenesis and inhibits neuronal 
apoptosis, alleviating ischemic brain injury. Exosomal miR-132 
derived from BM-MSCs protects against ischemic stroke by 
dampening vascular oxidative stress and limiting blood-brain 
barrier damage (Nakano et al., 2021).
     Recognizing the mechanisms that mediate EV therapeutic 
effects on stroke may provide a deeper understanding of their 
crucial role in abrogating the disease pathology. A study by 
Xin et al. (2002) utilized BV-2 microglial cells to uncover 
the mechanism behind the therapeutic action of MSC-derived 
EVs against hypoxia-ischemia (HI). After treating the BV-2 
cells with MSC-derived EVs, Xin et al. (2022) found that the 
cells had increased viability and reduced expression of pro-
inflammatory cytokines. Through further study, they found that 
MSC-derived EVs alleviate HI-induced brain injury in neonatal 
mice by transporting miR-21a-5p, promoting the protective M2 
polarization of microglial cells by arresting signal transducer 
and activator of transcription 3  (Xin et al., 2022). Additionally, 
a study by Liu et al. (2023) established an ischemic brain injury 
mouse model to understand the mechanism behind the potential 
therapeutic effects of MSC-derived EVs on ischemic stroke. 
After injection of MSC-derived EVs, they noted increased 
interleukin-33 (IL-33) with decreased tumorigenicity 2 receptor 
(ST2) in the ischemic penumbra, resulting in functional 
recovery. They concluded that the MSC-derived EVs decrease 
the volume of cerebral infarction by inhibiting oxygen and 
glucose deprivation-induced cell death via an astrocytic IL-33/
ST2 signaling mechanism (Liu et al., 2023).
     Our recent study similarly demonstrates the participation 
of SC-derived EVs in functional recovery in an animal model 
of stroke (Lee et al., 2024). Using a population of non-
adherent CD34+ cells derived from human peripheral blood 
called novel ProtheraCytes®, which have been processed 
under good manufacturing practice and have been tested in 
a Phase 2 clinical trial in post-acute myocardial infarction 
(NCT02669810), we show that ProtheraCytes® secrete EVs 
that promote angiogenesis and vasculogenesis. In this study, 
intranasal transplantation of ProtheraCytes® three days after 
experimentally induced stroke (via transient middle cerebral 

artery occlusion) in adult rats ameliorated stroke-induced 
behavioral dysfunctions and ischemic injury at about a month 
after stroke (Lee et al., 2024). These functional outcomes 
indicate that minimally invasive intranasal delivery may be 
a practical and effective approach for clinical transplantation 
of stem cells. Equally important, human CD63+ EVs were 
elevated in the ischemic brains of stroke animals that received 
ProtheraCytes®, coupled with enhanced angiogenic and 
vasculogenic markers, dampened inflammation, and increased 
neurogenesis (Lee et al., 2024). These observations advance the 
utility of clinical grade ProtheraCytes® as a stroke therapy and  
highlight the implications of the EV-induced brain remodeling 
process. In tandem, these findings provide clinical insights into 
the design of intranasal cell therapy in stroke using EVs as a 
sensitive biomarker for monitoring the functional response of 
patients to the transplanted SCs.

Conclusion
Current stroke treatment focuses on preventing the progress 
of the occlusion or embolism, thus improving symptoms and 
prognosis. However, none of the existing therapies focus on 
improving the damage caused by secondary cell death. In this 
mini-review, we found that stem cells and their EVs serve as a 
robust treatment strategy in preventing this secondary cell death 
by engaging the inflammatory, angiogenic, vasculogenic, and 
neurogenic processes during the progressive stage of stroke. 
Thus, in the future, researchers need to deepen the knowledge 
around EVs’ mechanisms, physiologically and pathologically, 
after cell therapy to better depict their involvement in stroke 
and their ability to improve brain repair. Additional studies are 
warranted to further probe the safety and efficacy of EV-based 
therapies before they can be considered as a viable option to 
improve the quality of life of stroke patients. 
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